ISAKOS Congress 2021

2021 ISAKOS Biennial Congress Paper


A Melt Electrowritten Scaffold Inspired By Native Tissue Architecture Seeded With Meniscus Cells And Mesenchymal Stromal Cells

Jasmijn Korpershoek, MD, Utrecht NETHERLANDS
Mylène de Ruijter, PhD, Utrecht NETHERLANDS
Bastiaan Terhaard, BSc, Utrecht NETHERLANDS
Chella Hagmeijer, PhD, Utrecht NETHERLANDS
Daniel Saris, MD, Prof., Rochester, MN UNITED STATES
Miguel Castilho, PhD, Utrecht NETHERLANDS
Jos Malda, Prof., Utrecht NETHERLANDS
Lucienne A Vonk, PhD, Utrecht NETHERLANDS

University Medical Center Utrecht, Utrecht, NETHERLANDS

FDA Status Not Applicable


This study shows feasibility of a wedge-shaped meniscus construct made with MEW using medical-grade materials, seeded with a feasible cell number and cell type for potential translation as a one-stage treatment



Meniscus injury and meniscectomy are strongly correlated with osteoarthritis. There is an unmet need for functional meniscus replacements. The purpose of this study is to create a meniscus construct with micro-scale circumferential and radial fibres, inspired by native tissue architecture and using clinical grade materials. Secondly, we aim to seed the construct with a clinically relevant cell number and cell type for potential translation in one-stage treatment. In order to assess bio-compatibility, we compare the in vitro meniscus extracellular matrix formation in the construct.

Materials And Methods

Scaffolds were made from medical-grade polycaprolactone (Corbion) using melt-electrowriting (MEW) technology. Two different architectures were deposited with a programmed inter fibre spacing of 225 µm or 160 µm. The ratio of circumferential : radial fibres was 14:2 or 12:4. Printability was assessed using scanning electron microscopy (SEM). The scaffolds were seeded with co-cultures of primary human osteoarthritic meniscus cells and bone marrow mesenchymal stromal cells (MSCs) in fibrin glue (3 donor combinations; 5 technical replicates). The constructs were compared to a CMI® that was reduced to the same form and size and 2 Fused Deposition Modelling constructs. Elastic properties were assessed under uniaxial confined compression. After 4 weeks of culture, proteoglycan and DNA content were quantified. Cell distribution throughout the scaffold was assessed at 3 locations and 2 orientations using Hematoxylin and Eosin (H&E) staining. Micro Computed Tomography (uCT) was used to assess contruct dimensions.


After 28 days of co-culture, a basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. The MEW scaffolds showed a higher Young’s modulus compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. During 28 days of culture the cell-seeded scaffolds increased in yield stress and ultimate strength. Histology indicated distribution of cells across the construct.


This study shows feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials, and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment

International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine

567 Sycamore Valley Road W.
Danville, CA, USA 94526
Tel: +1 925.807.1197 • Fax: +1 925.807.1199