Search Filters

  • Media Source
  • Presentation Format
  • Media Type
  • Media Year
  • Language
  • Diagnosis / Condition
  • Diagnosis Method
  • Patient Populations
  • Treatment / Technique

Time-Series Biological Responses Toward Decellularized Bovine Tendon Graft and Autograft for 52 Consecutive Weeks after Rat Anterior Cruciate Ligament Reconstruction

Time-Series Biological Responses Toward Decellularized Bovine Tendon Graft and Autograft for 52 Consecutive Weeks after Rat Anterior Cruciate Ligament Reconstruction

Masafumi Itoh, MD, PhD, JAPAN Junya Itou, MD, JAPAN Umito Kuwashima, MD, PhD, JAPAN Ken Okazaki, MD, PhD, JAPAN Kiyotaka Iwasaki, Prof, JAPAN

Waseda University, Shinjuku-ku, Tokyo, JAPAN


2023 Congress   ePoster Presentation   2023 Congress   Not yet rated

 

Treatment / Technique

Anatomic Location

Anatomic Structure

Ligaments

ACL


Summary: This study revealed the excellent recellularization and tendon-bone integration abilities of tendons decellularized with a novel technology using pulsatile circulation in a cross-species model.


There is an essential demand for developing biocompatible grafts for knee anterior cruciate ligament reconstruction (ACLR). This study investigated cell infiltration into decellularized bovine tendon xenografts using a rat knee ACLR model. Twelve-week-old Sprague–Dawley rats were used. At weeks 1, 2, 4, 8, 16, 26, and 52 (each period, n = 6) after ACLR, rats receiving decellularized bovine tendon (group D, n = 42) or autologous tendon (group A, n = 42) as grafts underwent peritibial bone tunnel bone mineral density (BMD), histological, and immunohistological assessments. BMD increased over time in both the groups until week 16 and then remained unchanged without exhibiting significant differences between the groups. Initially, cellularity in group D was lower than that in group A; however, by weeks 4–8, both the groups were comparable to the native anterior cruciate ligament group and cellularity remained unchanged until week 52. Initially, group A had more M1 macrophages, indicating inflammation, whereas group D had more M2 macrophages, indicating tissue regeneration. Nonetheless, the M1 and M2 macrophage counts of both the groups were comparable at most times. This study revealed the excellent recellularization and tendon–bone integration abilities of decellularized tendons using a cross-species model.


More 2023 ISAKOS Congress Content